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1 Introduction

Continuous online monitoring of complex dynamic systems is commmon in applications as diverse as
industrial plant operations, telecormnu nications networks, and biomedi cal health monitoring. For
monitoring purposes, the exact nature of the systemn under observation is ty pically not relevant pro-
vided there exist sol ne measurements or sy p toms which provide diagnostic information regarding
the underyling syster n state, This paper disc usses how both patiern recognition (in the forin of
neural networks) and hidden Markov miodels (HMM ‘s) cau be used to automatically mounitor ouline
data for fault detection purposes. Monitoring for anomalies or faults poses some technical problems
which are not normally encountered in typical H MM applications such as speech recognition. In
particular, the ability to detect data from previously unsecnr classes andtlic use of prior knowledge
in constructing the Markov model are both essential in applications of this nature. Thie paper
describes recent progress 011 these and related topics (inthe context of fault detection ) and uses a
real-wor]cl applicationat JP1 toillustrate thie ideas.

2 Pattern Recognition in Fault M onitoring

2.1 1 3ackground on Fault Detection for Dynamic Systems

I'or linecar systems where the system dynamics and sensor measurement process can be completely
modelledinar) accurate manuner, a variety of optimnal control- theoretic methods for fault detection
can be derived based on stale estiination and statistical analysis of the residual error signals [1].
Iu practice, however, particularly for large complex systems, it is common that the system model
may not be that accurate or reliable. A ¢ ommon techuique in such a situat lon is'to fit. a dynamic
model to the relation ship between the measured input and output signals of the system - the
miodel is often an autoreg ressive-exogen ous (A RX) model. The parameters ¢ of the (fixed order)
niodel are estimated on-line in real-time using observed input/output data. H ence, fault detection
can be carried out by observing changes in the values of the estimated parameter values (or model
cocflicients) relative to some reference set.  This method has b ec ome known as the parameter
method of fault detection [2, 3].



I a typical complex systemn there may be little or no prior knowledge as to how the parameters
will change in relation (o particular fault condit ions. Agsume that there exists a labelled database
of tran ing data consisting of observed data collected under both normal and fault conditions, i.e.,
a sel of' pairs {f,w; }, where 0 € 1¢¢ is a d-dimensional symptom or feature vector, and where
Wi, .. Wy, are state labels (typically wy is the norinal state and the others are fault states). Hence,

onc can use supervised learning or classification techniques to learn a model which estimates the
posterior probabilities of the system sta te given the observed data , p(w; 19). Standard feed-forward
neural networks canbe quite useful in diagnostic applications of thisnature.In earlier work we
have described a particular application of this idea to fault diagnosis of an electro-mechanical an-
tenna pointing systemn [4]. It was found that a single hidden layer ncural network discriminant
outperformed a parametric Gaussian classifier whenusedto classify ©timated ARX coeflicients.
Unlike other non-parametric classification methods such as nearest neighbour classifiers, feedfor-
ward necural networks provide reasonable estimnates of posterior class probabilities [5, 6}. This is
asignific ant advantage in real-worlcl applications where the network may be acomponent of an
overall decision making systein, e.g., part of ahidden Markov model as iy Section 3.

2.2 Detection of Novel States

A standard assumption is that there are m known mutually exclusive aud exhaustive states (or
“classes”) of the systemn, wy,,uh, . The“tnutually exclusive” assumnption is reasonable inmany
applications where multiple siimultancous failure are highly unlikely. However, the exhaustive
assumption is somewhat unrealistic. In particular, for fault detectionin a comnplex SYSt€l; comnposed
of hundreds of thousands of comypionents, ghere are a myriad of possible fault ¢onditions which might
occur. The probability of ©Ccurrence of any Sit gle condition is very small, but nonetheless there is
a significant probability that at least one of these conditions will occur over some finite time. As
an example, for the antenna application described in Section 4, therearc afew well-klJecnv]l faults
{suchas tachometer failures) which occur with regularity andcan be assigned specific fault states
m advance: however it is not practical to assign states to all the other minor faults which might
occur.

Hence, the question must be asked as to whether or not a diseriininant classifier trait jed o
distinguish datafromm states, can identify data from a different, or novel state. The answer lies
inasimple application of Bayes’rule. If the clasdifier is a pure discriminant, ie., it directly models
the posterior probabilit y p(w;|0), then it is implicitly relying on the assumption of exhaustivity and
cannot in principle detect novel data. A good example of this type of classifier is a feedforward
neural network using sigmoidal activation functions. Issentially, if one gives such a trained network
new data which 1S far away from the training data in the feature space, it will produce a near certain
classification decision for onc of the existing classes because of te seini-global nature of the sigmoid
model [7].

On the other hand, a generative model directly models the data likelihood p(0wi) and then
determines posterior class probabilities by application of Baves’ rule. Examples of generative clas-
sifiers include parametric models such as Gaussiau classifiers and memory-based met hods such as
kernel density egtimators and near neighbour models, Generative models are by nature well suited
to online adaptation, in particular, adaptation of the structure of theinodel such asthe inclusion
of anew class - conversely, d18¢ riminant models are by nature difficult to adapt online. However,
there jg a trade-ofl; because generative ypodels typically are doing more modelling than just gearch-
ing for a decision boundary, they cau be less efficient (than discriminant methods) in their use of
the data. For example, gencrative models typically scale poorly with 1P ut dimensionality for fixed
training sample size - see Dawid[8] and Sinyth [7] for further discussion.




Anobvious idea inpractice is use both a generative and discriminative classifier andaddan
“m41t} 17 state to the model to cover “all other possible states” not accounted for by the known m
states. Hence, the posterior estiinates of the generative classifier are conditioned on whether or not
the data comes from one of themknown classes. l.et the syinbol Wiy ,...9} denote the event that
the true system state is one of the known states, and let (w41 10) be the posterior probability
that, the data is fromn an unknown state. Hence, one can estimate the true posterior probability of
individual known states as

~("iit) = pa(will, wi Ly ) X ¢ Plwn 1 10)), 1<i<m @

where pa(will, win, 2)) s the posterior probability estimate of state r' as provided by a discrim-
inative model. p(flwy y,.., .3)is provided directly by the generative model which typically can be
a mixture of Gaussians or a kernel density estimate over all of the training data (ignoring class
labels). The calculation of p(ws.q1]0) can then be obtained *i* Bayes’ rule “f (w1 s somehow
known - in{9) @y approach is described which uses a non-informative uniforin Bayesian prior for
p(0lws41 ) over a boundedspace of parameter values.

31lidden M arkov modecls for Temporal Context

3.1 General Principles

It is assumed that the reader is familiar with the basic terminology and €0l,cepts of TMMinethods
due to space hhmitations, detailed explanations and equations involving HMM’s are omitted in
this version of the paper (see Rabiner [10] fora thorough overview).

The methods outlined in Section 2 ignore temporal information in the sense that a given feature
vee tor is classified without, using any informationabout previous features or classification estimates.
Clearly this “instantancous” classification] ignores the temporal context of the problem. For exam-
ple, with the antenna application, the sampling interval between feature vectors is 4 seconds, while
themean thne between failures is at least onthe order of hours.

An elegant model which incorporates temnporal context is that of’ the discrete-time, finite-state,
hidden Markov model. Taking a cue from the development of hybrid neural network/H MM ap-
plications 1n speech recognition, the idea is to embed the instantaneous estimate provided by the
network within a Markov model framework [1 1]. Rather than directly modelling the correlations
at the feature level, teinporal correlation is directly modelled at the st ate Jevel. The Markov model
{ransition parameters can be estimated using a combination of prior kijowledge of the long-term
system behaviour and gross failure statistics (see Section 3.2). The two primary assumplions,
namely, independence of feature estimates from one window to the next and a first-orcler Markov
state dependence, both appear quite robust in pract ice provided certain reasonable assumptions
arcmet [1 1]. Theidea of treating the online monitoring of dynarmic systems within the framework
of a HIIM M appears to have been proposed independently by Sinyth and Mellstrom [4] for elec-
tromechanical system monitoring and by Avanoglu [1 2] for communications networks modelling --
Provan [13] also describes anovel application of essentially the samneidea to the problem of medical
diagnosis and trecatient of acute abdominal pain.

3.2 Specification of 11 MM Transition Probabilities -

The nature of the I MMinethod used for online monitoring is considerably different to the more
traditional HMM approach for spcech recognition and language modelling. 1y pically, there is only
asingle model and the focus is 011 determining the likely state sequence for that particular model.




The model itsell is dominated by a single state wj describing normal system behaviour -- the
system t ypically spends most of its time in this one st ate. Hence, unlike s} eech applications, the
dynamics of the IMM can be quite simple - noneth cless, the practical benefits from modelling
a system in this manuer (as opposed Lo ignoring temporal ol itext) can be sig nificant in terins of
imnproving the accuracy of the state estimnates. Inpractice it is convenient to augment the model
with states sucly as an “ofl” state where the systemn is no longer operating in its normal dynamic
mode, e.g., the power is switched ofl to an electrical system.

A's described in Section 2, the m -1 1th state w,,41 is also unusualin the sense that it accounts
for data from states which are unknown e priori. The incorporation of Equation (1) into the more
standard HMM updating equations is straightforward and will not be deseri bed here.

While there mav be training data for specific states available (normaldataand fault data
obtained under controlled conditions), it is unlikely that there are sequences of annotated data
available for training. Hence, direct appheation Of Baum- Welch (or similar) methods for parameter
cstiimation arc not feasible. Instead prior knowledge of the failure modes of the system must be
uscd. For example, by use of the properties of the geome tric distribution of state durations (for a
first. order HMM), the following shinple relation holds betweenthie transition probability ay; and
the MTBY {pr9 3, of the syste)ll:

ayy v 1- -- .
YR
where 7 is the sampling interval )etw’cell state estimates. T'he MTRBI can be either estimated
from a problem database or {rom rehiability specifications. Simmlarly, component failure rates for
spec ific components provide constraints on other transition probabilities. I this manner, the HMM
transition matrix is designed based on prior knowledge o f overall syster n reliability [11]. Tu Section
b methods for updating thesc estimates online are discussed.

Note that alternative ap proaches (to the HMMinethod) would be either to use “windows”
of past data cornbined with present data as in time-delay neural networks, or to use rec urrent
neural networks with feedback. However, the HMM 1 iodel has the distinet advantage of using
prior knowledge inanclegant  and explicit form, whichin turn facilitates design and tuning of the
monitoring model in an appli cati o sett ing. For example, when aging components are replaced by
new components, the HMM paraimecters Call be adjusted as a function Of Jifetime reliability mod els,

4 Application to Antenna Monitoring

4.1 Problem Background

The systemn bemgmonitored is a large steerable 341 ground antenna which is a critical part of
NASA’Ss Deep Space Network (IDSN). There are 3 antenna sites (located in California, Spain and
Australia) providing full 2A-hour c.overage for deep space comnnunications with various interplan-
clary spacecrafl. The antennas represent. critical potential single points of failure inthe network.
The antenna servo pointing systems are acomplexmix of electro-mechanicalcomponents. A faulty
¢ ompon ent manifests itself in direc tly via a change ill the character istics of observed sensor read-
ings in th ¢ pointing ¢ ontrol loop. Because of the non-linearity and feedback present, direct causal
relationships between fault ¢ onditions and observed symptoms can be difficult to establish - this
makes manual fault diagnosis a time-consumning and expensive process and the application of direct
analytical models imipra ctical. .
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Figure 1: Estitnated posterior probability of normal state (a) using no HMM aud the exhaustive
assumption (normal - 3 fault gt ates), (b) using a HMM wit h a generative model (normal - 3 faults
-} other statc).

4.2 Experimental Results

The neural- HMM method outlined in Sections 2 and 3 was applied to monitoring the motor current
signal of the elevat jon pointing systemn for a DS N 34mantenna at Goldstone, California. Figure 1
(a) and(b)show typical comparative results for two different models (space limitations precluded
the inclusion of more detailed experimental results). The inodels were trained and tested 011 inde-
pendent data sets. The experiment consisted of introducing hardware faults into the system in a
controlled manner at 15 minutes and 45 minutes, cach of 15 minutes duration. Shown in Figure
1 arec the model’s estimates over time that the systemn is inthe normal state -- corresponding
graphs of estimates for the other states are not shown but arc qualitatively similar. The input
feature vector § consisted of 8 A RX cocflicients and 4 cuergy estimates -- these were estimated
from blocks of sensor data (inotor current, tachometer, counter torque readings sampled a 50Hz)
spaced at 4 second mtervals.

Model (a) uses no HMM and assuines that the 4 known states are exhaustive -- a single
feedforward neural network with 8 hidden un its was used as the discriminative model. Model (b)
uscs @ MM with b states, where a generative model (a Gaussian mixture model) and a flat prior
arc used to determine the probabili ty of the btli st ate (as in [9]) and the same neural net work as
m model (a) is used as a discriminator for the other 4 known states (as in liquation (])). The
parameters of the HMM were sct according toknown MBI statistics for the system and the
individual components.




The results indicate that model (a)’s estimates are quite noisy and contain a significant nurnber
of potential false alarins (highly undesirable inan operational environnent). Model (b) is much
morce st able duc to the simoothing effect of t he HM M. Nonetheless, we note that between tile 8th
and 10 minutes, there appear to be some possible false alarms. Oninspection of the original data
it was found t.list large transients (of unknown origin) were in fact present inthe sensor data and
that this was what the model hiad detected. The model without a generative component. (either
with or without the HMM) incorrectly classified thisstate asone of the known fault states (these
results are not shown). A variety of other experiments have been carried out investigating the
eflects of different types Of density /discrimination models and Markov structures. T'he resuits have
been quite robust. At present, the software implementation of model (b) is being tested for online
daily uscat one of JPL’s antennas,

5 Work in Progress

An algorithm which could identify new transient states and add them L o the model would be
quite useful for autonomous operations. The problem of adapting MM model structure is quite
diflicult. however without the use of significant prior constraints - Stolcke and Omohundro [14]
have developed a method for discrete HMM’s, but the continuous density case is conceptu ally more
complex and problematic.

"The casier probleimn is that of adapting the parameters of a fixed model. Repeated use of the
Baum-Welc h estimmation method in batch-inode secins inappropriate and computati onally infeasible
for online adaptation. Instcad we have investigated simpler methods. 1n particular, for the tran-
sition probabihties, the use of Dirichlet priors [19] leads to intuitive and computationally simple
updating schiecmes in addition, the method appears to be arnapproximation to the full Baum-
Welch estimation process. We hope to have more results regarding online adaptation by the time
of workshop.

Other issues involve the robustness of lincar ARX models for chiaracterising changes in a time
series: currently wc use a fixed order model where the order is chosen based on the norinal data
but mnay not be appropriate for fault or trausient states. For the purposes of change detection the
lincar ARX features have worked well in practice -- however, less parametric representati ons would
in principle provide the ability to detect a broader set of fault conditions.

Another primmary imitation of the currentmodelis the reliance on afirst-order Markov assump-
tion - again, extensions to include specific state duration density models (other tha n the 1m plicit
geometric density) for certain types of faults arc under investigation - suchi sem i- Markov processes
have been successfully used in speech applications [16).

6 Conclusion

For fault monitoring applications the evidence so far indicates that the generative/discriminative
approach is more sensitive to change detection than the purely discriminative met.lloc], and that
the use of HMM methods increases the quality of the model substantially by using prior knowledge
to account for temporal correlations. The ability to link these different models within a unifying
probabilistic framework is a critical factorin their successful application.
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